Estimating sampling biases andmeasurement uncertainties of AIRS/AMSU-A temperature and water vapor observations using MERRA reanalysis

نویسندگان

  • Thomas J. Hearty
  • Andrey Savtchenko
  • Baijun Tian
  • Eric Fetzer
  • Yuk L. Yung
چکیده

We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be ± 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and > 30% dry over midlatitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10%wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AIRS/AMSU/HSB validation

The Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit/Humidity Sounder for Brazil (AIRS/AMSU/HSB) instrument suite onboard Aqua observes infrared and microwave radiances twice daily over most of the planet. AIRS offers unprecedented radiometric accuracy and signal to noise throughout the thermal infrared. Observations from the combined suite of AIRS, AMSU, and HSB are processed into...

متن کامل

Interactive comment on “Climatology and Interannual Variability of Dynamic Variables in Multiple Reanalyses Evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP)” by

This study provides a comprehensive overview of the temperature and zonal wind biases in eight reanalysis data products, with a focus on stratospheric levels. The study identifies biases in each reanalysis from the “reanalysis mean” (defined as the mean of the MERRA, ERA-Interim, and JRA-55 reanalyses). It then examines reanalysis temperature biases with respect to HIRDLS (an independent satell...

متن کامل

A strict test in climate modeling with spectrally resolved radiances: GCM simulation versus AIRS observations

[1] The spectrally resolved infrared radiances observed by AIRS provide a strict and insightful test for general circulation models (GCMs). We compare the clearand totalsky spectra simulated from the Geophysical Fluid Dynamics Laboratory GCM using a high resolution radiation code with the AIRS observations. After ensuring consistency in the sampling of the observed and simulated spectra and a p...

متن کامل

Integrated Water Vapor Measurements from Atmospheric Infrared Sounder ( Airs ) and Surface - Based Global Positioning System Receivers

Integrated Precipitable Water (IPW) vapor estimates derived from a network of ground-based GPS receivers provide an accurate, convenient, and statistically robust means to assess the quality of AIRS water vapor retrievals over the contiguous United States (CONUS). For a period from April to October 2004, GPS IPW estimates were paired with AIRS data nearly coincident in time and space. The match...

متن کامل

A Comparison of Atmospheric Reanalysis Products for the Arctic Ocean and Implications for Uncertainties in Air–Sea Fluxes

The uncertainties related to atmospheric fields in the Arctic Ocean from commonly used and recently available reanalysis products are investigated. Fields from the 1) ECMWF Interim Re-Analysis (ERAInterim), 2) Common Ocean–Ice Reference Experiment version 2 (CORE2), 3) Japanese 25-yr Reanalysis Project (JRA-25), 4) NCEP–NCAR reanalysis, 5) NCEP Climate Forecast System Reanalysis (CFSR), and 6) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014